E-SUPER VERTEX MAGIC LABELING AND V-SUPER VERTEX MAGIC LABELING
 Neelam Kumari1, Seema Mehra2
 Department of mathematics, M. D. University Rohtak (Haryana), India
 Email: neelammorgill@gmail.com

Abstract

Let $G=(V, E)$ be any simple, connected and undirected graph with p vertices and q edges. A vertex magic total labeling is a bijection f from V U E to a set of integers $\{1,2, \ldots, p$ $, p+q\}$ such that if v is a vertex then the weight of each vertex $f(v)+\sum f(u v)=k$ for some integer constant k i.e. a constant, independent of the choice of the vertex $v \in \vee[7,8]$. In this paper, we deal with specialized graphs that are V super vertex magic graph and another is E - super vertex magic graph and find out the relation between these two graphs.

KEYWORDS: - Graph, Simple graph, Graph labeling, Vertex Magic Labeling, vertex antimagic labeling and Super Vertex Magic Labeling.

[1] INTRODUCTION

Let $G=(V, E)$ be a simple and finite undirected graph with $|\mathrm{V}|=\mathrm{p}$ and $|\mathrm{E}|=\mathrm{q}$. The degree of a vertex v is the number of edges that have v as an end point[11]. A total labeling of G is a bijection : $\mathrm{f}: \mathrm{V} \mathrm{U} \mathrm{E} \rightarrow\{1,2, \ldots$, $\mathrm{p}+\mathrm{q}\}$. If in total labeling each vertex has the same weight, then this labeling is said to be total vertex magic labeling, i.e. $\mathrm{w}(\mathrm{v})=\mathrm{k}$ for each $\mathrm{v} \in \mathrm{G}$ [4]. If in a vertex magic total labeling $f: V \rightarrow\{1,2, \ldots \ldots ., p\}$ then vertex magic total labeling is called V-super vertex magic total labeling. A graph that has V -super vertex magic total labeling is called a V-super vertex magic total graph. And if in a vertex magic total labeling $\mathrm{f}: \mathrm{V} \rightarrow\{\mathrm{p}+1, \mathrm{p}+2, \ldots \ldots . ., \mathrm{p}+\mathrm{q}\}$ then vertex magic total labeling is called E-super vertex magic total labeling. A graph that has E-super vertex magic total labeling is called a E-super vertex magic total graph. Note that if the smallest numbers are assigned to the vertices then the magic constant is k
$k=\frac{(p+q)(p+q+1)}{p} \frac{p+1}{2}[A]$ and has to be an integer. In E - super vertex magic labeling the magic constant is denoted by $\mathrm{k}=\mathrm{m}$. Note that if the smallest numbers are assigned to the edges then the magic constant is denoted by $\overline{\mathrm{k}}$ and $\overline{\mathrm{k}}=\mathrm{q}+\frac{\mathrm{q}(\mathrm{q}+1)}{\mathrm{p}}+\frac{\mathrm{p}+1}{2}[\mathrm{~B}]$. Magic labeling of a graph was introduced by Sedlack [9], the concept of vertex- magic labeling was appeared in 2002[5]. For various type of graph labelings see[10,12].

[2] PRELIMINARIES AND MAIN RESULTS

Before looking at E - super vertex magic labeling and V - super vertex magic labeling, we first look at some basic concepts and definitions of graph theory. We also show that some graphs admits E - super vertex magic
labeling and V - super vertex magic labeling simentiously but some not $[1,2,3,6]$.
Definition [1] .A graph G with p vertices and q edges is E - super vertex magic graph if there exist a bijection $f: E \rightarrow\{1,2, \ldots \ldots \ldots ., q\}$ and $f: V \rightarrow\{q+1, q+2, \ldots \ldots \ldots . ., p+q$ \} and for this labeling there is some constant $\overline{\mathrm{k}}$ such that for each vertex v the some of the labels for v and sum of the labels for all the edges incident to v is $\overline{\mathrm{k}}[\mathrm{B}]$.
Definition [2].A graph G with p vertices and q edges is called V -super vertex magic total graph if there exist a bijection $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots \ldots . . ., \mathrm{p}\}$ and $\mathrm{f}: \mathrm{E} \rightarrow\{\mathrm{p}+1, \mathrm{p}+2$, $\ldots, \mathrm{p}+\mathrm{q}\}$ and for this labeling there is some constant k such that for each vertex v the some of the labels for v and sum of the labels for all the edges incident to v is k [A].
Lemma [A]. If a graph G is V-super vertex magic then the magic number k is given by $2 q+\frac{q(q+1)}{2}+\frac{p+1}{2}$.
Lemma [B]. If a graph G is E-super vertex magic then the magic number is given by $\overline{\mathrm{k}}=\mathrm{q}+\frac{\mathrm{q}(\mathrm{q}+1)}{\mathrm{p}}+\frac{\mathrm{p}+1}{2}$.
Theorem 1. Graph Cn admits V-super vertex magic labeling and E-super vertex magic labeling only if n is odd positive integer.
Proof. Let n be any odd positive integer, and Cn be a graph with vertex set and edge set as

$$
V(G)=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
$$

and

$$
E(G)=\left\{\operatorname{vi~}_{\mathrm{v}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} .
$$

Case (i) Let n be odd and the vertex set and edge set of Cn are given by

$$
\mathrm{E}(\mathrm{Cn})=\{1,2, \ldots \ldots \ldots ., \mathrm{n}\}
$$

and

$$
V(C n)=\{n+1, n+2, \ldots \ldots . .2 n\} .
$$

Define $\mathrm{f}: \mathrm{VUE} \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ as follows, $\mathrm{f}(\mathrm{vi})=2 \mathrm{n}+1-\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$,

$$
\begin{gathered}
f\left(v_{i} V_{i+1}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd, } \\
\frac{n+1+i}{2} & \text { if } i \text { is even, }\end{cases} \\
f\left(v_{n} v_{1}\right)=\left\{\frac{n+1}{2} .\right.
\end{gathered}
$$

so f is E-super vertex magic labeling of C_{n} and using lemma [B] the magic number is given by $\frac{5 n+3}{2}$.
Case (ii) Let n be odd integer and the edge set and vertex set of Cn are given by

$$
V(C n)=\{1,2, \ldots, n\}
$$

and

$$
\mathrm{E}(\mathrm{Cn})=\{\mathrm{n}+1, \mathrm{n}+2, \ldots \ldots . .2 \mathrm{n}\} .
$$

Define $\bar{f}: V \cup E \rightarrow\{1,2, \ldots \ldots \ldots, 2 n\}$ as follows, $\bar{f}\left(v_{i}\right)=\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$

$$
\begin{gathered}
\bar{f}\left(\text { vi }_{i+1}\right)= \begin{cases}\frac{4 n-i+1}{2} & \text { if } i \text { is odd, } \\
\frac{3 n-i+1}{2} & \text { if } i \text { is even, }\end{cases} \\
\bar{f}\left(v_{n} v_{1}\right)=\left\{\frac{3 n+1}{2} .\right.
\end{gathered}
$$

so \bar{f} is V-super vertex magic labeling of Cn corresponding to E-super vertex magic labeling of Cn defined in case(i) and using lemma [A] the magic number is given by $\frac{7 \mathrm{n}+3}{2}$.

Example 1. Fig (i) and Fig (ii) illustrate the V-super vertex magic labeling and E-super vertex magic labelingofC $C_{\text {. }}$.

Fig (i) and Fig (ii) examples of C_{5} with 5 vertices
Theorem 2. The path Pn admits E-super vertex magic labeling for all $\mathrm{n} \geq 3$, but not admits V - super vertex magic labeling corresponding to this E-super vertex magic labeling of Pn.

Proof. Let $n \geq 3$ be any odd positive integer, and Pn be a graph with vertex set and edge set as

$$
\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
$$

$$
\mathrm{E}(\mathrm{G})=\left\{\operatorname{vi}_{\mathrm{v}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}
$$

Case (i) Let $\mathrm{n} \geq 3$ be odd and the edge set and vertex set of Pn are given by

$$
E(P n)=\{1,2, \ldots, n\}
$$

and

$$
V(\operatorname{Pn})=\{n+1, n+2, \ldots2 n-1\}
$$

Define $f: V U E \rightarrow\{1,2, \ldots, 2 n-1\}$ as follows,

$$
\mathrm{f}\left(\mathrm{v}_{1}\right)=2 \mathrm{n}-1
$$

$$
\mathrm{f}(\mathrm{vi})=\mathrm{n}+\mathrm{i}-2 \text { for } 2 \leq \mathrm{i} \leq \mathrm{n},
$$

$f\left(\right.$ vi $\left.^{v_{i+1}}\right)= \begin{cases}\frac{n-i}{2} & \text { if } i \text { is odd, } \\ \frac{2 n-i}{2} & \text { if } i \text { is even, }\end{cases}$
so f is E-super vertex magic labeling of Pn and using lemma [B] the magic number is given by $\frac{5 n-3}{2}$.

Case (ii) Let $\mathrm{n} \geq 3$ be odd integer and the edge set and vertex set of Pn are given by

$$
V(P n)=\{1,2, \ldots \ldots, n\}
$$

and

$$
E(P n)=\{n+1, n+2, \ldots \ldots .2 n\} .
$$

Define $\overline{\mathrm{f}}: V \mathrm{VE} \rightarrow\{1,2, \ldots \ldots, 2 \mathrm{n}-1\}$ as follows,

$$
\begin{aligned}
& \overline{\mathrm{f}}\left(\mathrm{v}_{1}\right)=1, \\
& \overline{\mathrm{f}}(\mathrm{vi})=\mathrm{n}-\mathrm{i}+2, \quad \text { for } 2 \leq \mathrm{i} \leq \mathrm{n},
\end{aligned}
$$

$\bar{f}(v i$ vi +1$)= \begin{cases}\frac{3 n+i}{2} & \text { if } f \text { is odd, } \\ \frac{2 n+i}{2} & \text { if } i \text { is even }\end{cases}$
By using lemma [A], we don't find the magic number corresponding to case(i), so \bar{f} is not V-super vertex magic labeling of Pn corresponding the above E- super vertex magic labeling.
Corollary 1. A graph G having a pendant vertex does not admits V -super vertex magic labeling and E-super vertex magic labeling simentiously as in Fig (i) and Fig (ii) of example 2.

Example 2. Fig (i) illustrate the E-super vertex magic labeling of Pn and Fig (ii) shows that it don't admits V-super vertex magic labeling corresponding to Esuper vertex magic labeling in Fig (i).

and

Fig(i)

Fig(ii)
Theorem 3. mCn admits V-super vertex magic labeling and E-super vertex magic labeling if and only if m and n are odd positive integers.

Proof. Let m and n be odd positive integers, mCn be a graph with vertex set and edge set as $V=V_{1} U V_{2}$
\qquad Vm , where $\mathrm{Vi}=\left\{\mathrm{vi}_{1}, \mathrm{v}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\text {in }}\right\}$ and $\mathrm{E}=\mathrm{E}_{1}$ U E2 \qquad Em, where $e_{i j}=v_{i j} v_{i j+1}$ for $1 \leq i \leq m, 1 \leq j \leq$ $n-1$, and $e_{i n}=v_{i n} V_{i 1}$. Let n be odd, and we define the mapping as

Case (i) Let n be odd,
and let us we define a mapping $\mathrm{f}: \mathrm{V} \operatorname{UE} \rightarrow\{1,2, \ldots$, 2 nm \}in which smallest numbers are assigned to edges

Define $\mathrm{f}: \mathrm{V} \mathrm{UE} \rightarrow\{1,2, \ldots, 2 \mathrm{mn}\}$ as follows,
For $1 \leq \mathrm{j} \leq \frac{\mathrm{m}-1}{2}$,
$f($ vij $)= \begin{cases}2 n m-j m+1-2 i & \text { for } 1 \leq j \leq n-2, \\ m n+j & \text { for } j=n-1, \\ \frac{1}{2}(4 n-1) m+\frac{1}{2}+i & \text { for } j=n,\end{cases}$
for $\frac{m+1}{2} \leq j \leq m$
$f(v i j)= \begin{cases}2 m n+m-j m+1-2 i & \text { for } 1 \leq j \leq n-2, \\ m n+i & \text { for } j=n-1, \\ \frac{4 m m-3 m+1+i}{2} & \text { for } j=n,\end{cases}$

For $1 \leq \mathrm{j} \leq \frac{\mathrm{m}-1}{2}$,

$f(e i j)= \begin{cases}\frac{(j-1) m}{2}+i & \text { for } j=1,3, \ldots, n-2, \\ (n+j) \frac{m}{2}+\frac{1}{2}+i & \text { for } j=2,4, \ldots \ldots . n-1, \\ (n+1) \frac{m}{2}+1-2 i & \text { for } j=n,\end{cases}$

$$
\text { for } \frac{m+1}{2} \leq j \leq m
$$

$f(e i j)=\left\{\begin{array}{cl}\frac{(j-1) m}{2}+i & \text { for } j=1,3, \ldots ., n-2, \\ (n+j-2) \frac{m}{2}+\frac{1}{2}+i & \text { for } j=2,4, \ldots \ldots . n-1, \\ (n+3) \frac{m}{2}+1-2 i & \text { for } j=n\end{array}\right.$
so f is E-super vertex magic labeling of mCn and using lemma [B] the magic number is given by $\frac{5 \mathrm{mn}+3}{2}$.

Case (ii)) Let n be odd,
and let us we define a mapping $\bar{f}: \mathrm{V} \mathrm{UE} \rightarrow\{1,2, \ldots \ldots .$. , 2 nm \}in which smallest numbers are assigned to vertices

Define $\overline{\mathrm{f}}: \mathrm{V}$ U E $\rightarrow\{1,2, \ldots, 2 \mathrm{mn}\}$ as follows:
for $1 \leq j \leq \frac{m-1}{2}$,
$\bar{f}($ vij $)= \begin{cases}\text { jm }+2 i & \text { for } 1 \leq j \leq n-2, \\ m n-i+1 & \text { for } j=n-1, \\ \frac{1}{2}+\frac{m}{2}-i & \text { for } j=n,\end{cases}$

$$
\text { for } \frac{m+1}{2} \leq j \leq m
$$

$\bar{f}(v i j)=\left\{\begin{array}{cl}m n+i & \text { for } 1 \leq j \leq n-2, \\ m n-i+1 & \text { for } j=n-1, \\ \frac{1}{2}+\frac{3 m}{2}-i & \text { for } j=n,\end{array}\right.$ for $1 \leq \mathrm{j} \leq \frac{\mathrm{m}-1}{2}$,
$\bar{f}\left((e i j)=\left\{\begin{array}{cl}\frac{(4 n-j+1) m}{2}-i+1 & \text { for } j=1,3, \ldots, n-2, \\ (3 n-j) \frac{m}{2}-\frac{1}{2}(1+2 i) & \text { for } j=2,4, \ldots \ldots . n-1, \\ \frac{3 m n}{2}-(n+1) \frac{m}{2}+2 i & \text { for } j=n\end{array}\right.\right.$

$$
\text { for } \frac{m+1}{2} \leq j \leq m
$$

$f($ eij $)= \begin{cases}2 m n+\frac{(j+1) m}{2}+1-i & \text { for } j=1,3, \ldots ., n-2, \\ \frac{3 m n}{2}-(j+1) \frac{m}{2}-\frac{1}{2}+i & \text { for } j=2,4, \ldots \ldots . n-1, \\ \frac{3 m n}{2}-\frac{3 m}{2}-1+2 i & \text { for } j=n\end{cases}$
so f is V-super vertex magic labeling of mCn and using lemma [A] the magic number is given by $\frac{7 \mathrm{mn}+3}{2}$.

[3] CONCLUSION

Some new families of graphs are also investigated. To investigate some more V -super vertex magic graphs and E-super vertex magic graphs and to discuss these labelings in the context of various graphs operations is an open area of research.

References

1. 2. J. Gallian, A dynamic survey of graph labeling , The Electronic Journal of Combinatorics 14 (2007,) \#DS6.
1. 2. I. D. Gray, J.A.Macdougall and W.D. Wallis,On Vertex -magic labeling of complete graphs, Bull. Inst. Combin. Appl. 38 (2003), 4244.
1. 3. D. Mcquillan and K. Smith, Vertex -magic total labeling of odd complete graphs, Discrete Math.305(2005), 240-249.
1. 4. J.A.MacDougall, Mirka Millar, Slamin and W.D. Wallis, Vertex magic total labeling of graphs Utilitas Math., 61(2002), 3-21.
1. 5. J.A.MacDougall, Mirka Millar, Slamin and W.D. Wallis,Proc. of AWOCA $\square 99$ (1999), 19-25.
1. 6. K. A. Sugeng, Labelling of Path, Preprint.
1. 7. A.Kotzig, A. Rosa, Magic valuation of finite graphs, Canad. Math. 13 (1970) 451-461.
1. 8. W.D. Wallis , Magic Graphs, Birkhauser Boston(2001).
1. 9. S. Roy and D.G.Akka, On complementary edge magic of certain graphs, American Journal of Mathrmatics and Statistics 2012, 2(3):2226.
1. 10. J.A.MacDougall, M.Miller, Slamin, W.D.Wallis, Vertex magic total labeling of graphs, Utillitas Math, 61 (2002), P.P 3-21.
1. 11. J. Sedlacek, Problem 27, Theory of graphs and its applications, In : Proceeding of Symposium, Smolenice 1963, pp. 163-167.
1. 12. J. Gallian, A dynamic survey of graph labeling , The Electronic Journal of Combinatorics 19 , \#DS6, 2012.

