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ABSTRACT: - Let G = (V, E) be any simple, connected and undirected graph with p vertices and q edges. A vertex magic total labeling is a
bijection f from V U E to a set of integers {1, 2, ..........., p+q }such that if v is a vertex then the weight of each vertex f(v) + ¥ f(uv) =k for some
integer constant k i.e. a constant, independent of the choice of the vertex v € V [7,8]. In this paper, we deal with specialized graphs that are V-
super vertex magic graph and another is E - super vertex magic graph and find out the relation between these two graphs.
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[1] INTRODUCTION

Let G =(V, E) be a simple and finite undirected graph
with |V| = p and |E| = q. The degree of a vertex v is the
number of edges that have v as an end point[11]. A
total labeling of G is a bijection: f: VUE —{1, 2, ....... ,
p*q}. If in total labeling each vertex has the same
weight , then this labeling is said to be total vertex
magic labeling, i.e. w(v) =k for each v € G [4]. If in a
vertex magic total labeling f : V. —{1, 2, ....... , p} then
vertex magic total labeling is called V-super vertex
magic total labeling. A graph that has V-super vertex
magic total labeling is called a V-super vertex magic
total graph. And if in a vertex magic total labeling
f:V ={pt+1, p+2, ... , p+q} then vertex magic total
labeling is called E-super vertex magic total labeling. A
graph that has E-super vertex magic total labeling is
called a E-super vertex magic total graph. Note that if
the smallest numbers are assigned to the vertices then
the magic constant is k

k = w —%1 [A] and has to be an integer. In

E - super vertex magic labeling the magic constant is
denoted by k = m. Note that if the smallest numbers
are assigned to the edges then the magic constant is

denoted by kand k = q+% +%1[B]. Magic labeling

of a graph was introduced by Sedlack [9], the concept
of vertex- magic labeling was appeared in 2002[5]. For
various type of graph labelings see[10,12].

[2] PRELIMINARIES AND MAIN RESULTS

Before looking at E - super vertex magic labeling and
V - super vertex magic labeling, we first look at some
basic concepts and definitions of graph theory. We also
show that some graphs admits E - super vertex magic

labeling and V - super vertex magic labeling
simentiously but some not [1, 2, 3, 6].
Definition [1] .A graph G with p vertices and q edges
is E - super vertex magic graph if there exist a bijection
f:E—{1,2, ..... ,q}and f:V —{q+l, q+2, ........ prq
} and for this labeling there is some constant k such that
for each vertex v the some of the labels for v and sum
of the labels for all the edges incident to v is k [B].
Definition [2] .A graph G with p vertices and q edges
is called V-super vertex magic total graph if there exist
abijectionf: V —{1,2, ......... ,ptand f:E —{p+lp+2,
.......... ,p+q} and for this labeling there is some constant
k such that for each vertex v the some of the labels for v
and sum of the labels for all the edges incident to v is k
[A].
Lemma [A] . If a graph G is V-super vertex magic then
a@+y)  pt1

2
Lemma [B]. If a graph G is E-super vertex magic then
q+% +2T

the magic number k is given by 2q+

the magic number is given by k=

Theorem 1. Graph Cn admits V-super vertex magic
labeling and E-super vertex magic labeling only if n is
odd positive integer.
Proof. Let n be any odd positive integer, and Cn be a
graph with vertex set and edge set as
VG)={vi:1<i<n}
and
EG)={vivin :1<i<n-1}.
Case (i) Let n be odd and the vertex set and edge set
of Cn are given by

E(Cn)={12,...... n}
and
V(Cn)={n+l, nt+2,...2n}.
Define f: VUE — {1,2,......... ,2n } as follows,
f(vi) =2n+1-i, forl<i<n,
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i+1 .
- ifi is odd,
f(ViV i) = n+1+i ipe s
5 if i is even,
n+1
f(vavi)= {2

so f is E-super vertex magic labeling of C, and using
5n+3

-

Case (ii) Let n be odd integer and the edge set and
vertex set of Cn are given by
V(Cn)={12,...... n}

lemma [B] the magic number is given by

and
E(Cn)={n+l,n+2,...2n}
Define f: VUE —{1,2,......... ,2n } as follows,
f(vi) =i, forl<i<n

4n—-i+1
F(Vi Vis ) = 3n—iz+1
2
F(Vn V1 ) — {3n2+1.

ifiis odd,

if i is even,

so f is  V-super vertex magic labeling of Cn
corresponding to E-super vertex magic labeling of Cn

defined in case(i) and using lemma [A] the magic
7n+3

2 "

number is given by

Example 1. Fig (i) and Fig (ii) illustrate the V-super
vertex magic labeling and E-super vertex magic
labelingofCi,

Fig (i) and Fig (ii) examples of Cs with 5 vertices
Theorem 2. The path Pn admits E-super vertex magic
labeling for all n = 3, but not admits V- super vertex
magic labeling corresponding to this E-super vertex
magic labeling of Pn.

Proof. Let n >3 be any odd positive integer, and Pn be

a graph with vertex set and edge set as
VG)={vi:1<i<n}

and

EG)={vivin :1<i<n-1}.
Case (i) Let n 23 be odd and the edge set and vertex
set of Pn are given by

EPn)={12,..... n}
and
V(Pn)={n+l,n+2,...2n1}.
Define f: VUE — {1,2,......... ,2n-1 } as follows,

f(vi) =2n-1,
f(vi) =n+i-2 for2< i<n,

L ifiis odd,
f(Vi Visl ) =

if i is even,

so f is E-super vertex magic labeling of Pn and using
lemma [B] the magic number is given by 5]12—_3

Case (ii) Let n = 3be odd integer and the edge set
and vertex set of Pn are given by

and
E(Pn)={n+l, n+2,.... 2n }.

Define f: VUE — {1,2,......... ,2n-1 } as follows,

f(V1) = 1,

f(vi) =n-i+2, for2<i<n,

3n+i

f(vivitl) = 2?1+i

2

ifiis odd,

if i is even

By using lemma [A], we don't find the magic number
corresponding to case(i), so f is not V -super vertex
magic labeling of Pn corresponding the above E- super
vertex magic labeling.

Corollary 1. A graph G having a pendant vertex does
not admits V-super vertex magic labeling and E-super
vertex magic labeling simentiously as in Fig (i) and Fig
(ii) of example 2.

Example 2. Fig (i) illustrate the E-super vertex magic
labeling of Pn and Fig (ii) shows that it don't admits
V-super vertex magic labeling corresponding to E-
super vertex magic labeling in Fig  (i).

o 5 6 7 8 1 5 4 3 2
=7 1 1 3 =% 6 o 7
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Theorem 3. mCn admits V-super vertex magic labeling
and E-super vertex magic labeling if and only if m and
n are odd positive integers.

Proof. Let m and n be odd positive integers , mCn be a
graph with vertex set and edge set as V = V; U V,
........... Vm , where Vi = { vi1, Vi2, ..., Vin } and E = E;
UE; ........... Em , where e;; = vij viju for 1i<m, 1<j<
n-1, and e;n = vin vi1 . Let n be odd, and we define the
mapping as

Case (i) Let n be odd,

and let us we define a mapping f: VUE —{1, 2, ........ ,
2nm }in which smallest numbers are assigned to edges

Define f: VUE — {1,2,......... ,2mn } as follows,
For1<i< m—_l,
2
2nm—jm+1—-2i for 1< j< n-—2,
f(vij)= mn + j for j=n-—1,

%(4n—1)m+%+i forj = n,

m+1 _ .
for TS j€<m

2Zmn+m—jm+1-2i forl<j<n-2

f(vij)={ mn +i forj=n-—1,
4nm-3m+1 +i .
—Y forj=n,
For1<i< nt
2
(j_zﬂ+i forj=13,...,n—2,
f(eij) = (n+j)?+%+i forj=2,4,......n—1,

(n+1)?+1—21 forj =n,

m+1_ .
for ==<j<m

(G-1)m
2

fei ={ M+i=D T+ +i forj=2,4,....n—1,

+i forj=13,...,n—2,

(n+3)?+1—21 forj=n

so f is E-super vertex magic labeling of mCn and using
5mn+3

lemma [B] the magic number is given by 5

Case (ii) ) Let n be odd,

and let us we define a mapping f: VUE —{1, 2, ....... ,
2nm }in which smallest numbers are assigned to
vertices

Define f: VUE — {1,2,......... ,2mn } as follows:

for1<ij< m—_l,
2

jm+ 2i for1<j< n-2
f(vij)= mn—i+1 for j=n-—1,
1 m . .
~+—=—i forj=n,
2 2
formTHSjSm
mn + i for 1< j< n-2,
f(vij)= mn—i+1 forj=n-—1,
1 3m .
E+7_1 forj =n,

for1<j< nt
2

G PR _i+1 forj=13,...,n-2
f((eii) = —_pm_1 i = -
f((eij) = (3n ])2 ;(1+2i) forj=2,4,....n-1,

3mn

T—(n+ 1)?+Zi forj=n

m+1 _ .
for - <j<m

2mn+0+21)m+1—i forj=1,3,...,n— 2,
3mn . m 1 . .
fleij={ 5 —(G+D5—3+i forj=24....n—-1,
142 forj=n

2 2

so f is V-super vertex magic labeling of mCn and
7mn+3

2

using lemma [A] the magic number is given by

[3] CONCLUSION

Some new families of graphs are also
investigated. To investigate some more V-super
vertex magic graphs and E-super vertex magic
graphs and to discuss these labelings in the
context of various graphs operations is an open
area of research.
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